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Abstract 

Background:  Maize (Zea mays L.) is one of the most important crops worldwide. 
Although sophisticated maize gene regulatory networks (GRNs) have been constructed 
for functional genomics and phenotypic dissection, a multi-omics GRN connecting the 
translatome and transcriptome is lacking, hampering our understanding and explora-
tion of the maize regulatome.

Results:  We collect spatio-temporal translatome and transcriptome data and system-
atically explore the landscape of gene transcription and translation across 33 tissues 
or developmental stages of maize. Using this comprehensive transcriptome and 
translatome atlas, we construct a multi-omics GRN integrating mRNAs and translated 
mRNAs, demonstrating that translatome-related GRNs outperform GRNs solely using 
transcriptomic data and inter-omics GRNs outperform intra-omics GRNs in most cases. 
With the aid of the multi-omics GRN, we reconcile some known regulatory networks. 
We identify a novel transcription factor, ZmGRF6, which is associated with growth. 
Furthermore, we characterize a function related to drought response for the classic 
transcription factor ZmMYB31.

Conclusions:  Our findings provide insights into spatio-temporal changes across 
maize development at both the transcriptome and translatome levels. Multi-omics 
GRNs represent a useful resource for dissection of the regulatory mechanisms underly-
ing phenotypic variation.

Keywords:  Maize, Translatome, Gene regulatory networks (GRNs), Transcription factor 
(TF)

Background
Maize (Zea mays L.) is not only one of most important food and energy crops, but also a 
model species for plant genetics. Maize and other crops need to constantly adjust their 
gene expression profiles to adapt to changing environments and various stresses [1, 2]. 
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Characterizing the regulation of gene expression is helpful for understanding adaptive 
mechanisms in maize and for modern breeding.

Transcription factors (TFs) account for 6–8% of protein-coding genes in multicellular 
organisms and play pivotal roles in regulating gene expression [3]. TFs recognize specific 
cis-regulatory elements to control the transcription of target genes, representing the 
regulatome [4]. The sessile mode of life subjects plants to drastic variations in environ-
ment, leading to dramatic changes in gene status compared to those seen in animals [5, 
6]. Therefore, the regulatome or gene regulatory networks (GRNs) of plants are inher-
ently complicated [7, 8].

Although a variety of approaches have been used to construct GRNs, including chro-
matin immunoprecipitation sequencing (ChIP-seq), yeast one-hybrid screen (Y1H), 
and protein-binding microarrays (PBM), these assays remain insufficient for studying 
the regulatory landscape of plants owing to their complexity and low throughput [9–
11]. Exploiting the massive quantities of mRNA data now are available, GRNs linking 
TFs to their targets can be inferred using statistical algorithms and machine learning 
techniques based on gene expression data [12, 13]. These GRN inference approaches 
are effective tools for identifying genes that have important biological functions or par-
ticipate in specific pathways [6, 7]. For example, characterization of key genes and their 
regulatory relationships at the transcript level using GRNs has revealed important roles 
in cell wall biosynthesis [14], regeneration [15], and root hair growth [16].

Pilot studies on GRN construction in maize have made great strides, providing sub-
stantial insight into the maize regulatome. A maize network was constructed using nine 
different endosperm, embryo, and kernel tissues, which illustrated the close correla-
tion between the embryo and the aleurone layer of the endosperm [17]. Comprehen-
sive GRNs have been established using large-scale transcriptome datasets (>6000 RNA 
sequencing samples) and showed that the presence/absence of TFs has greater effects on 
the expression of target genes than quantitative changes of TF expression [12]. However, 
these GRNs were constructed solely using transcriptome data.

Transcriptome datasets have been widely applied to infer genome-wide GRNs and 
investigate possible functional roles of individual genes at a system-wide scale based 
on the assumption that measured mRNA levels are a proxy for protein abundance [18]. 
In reality, mRNA levels are weakly correlated with protein abundance because multiple 
biological processes act on the intermediates between mRNAs and proteins, including 
mRNA degradation, translation, and protein folding [19]. Thus, GRNs built solely on 
transcriptome data are not as robust as once assumed. To enhance GRN predictions, 
integrating transcriptome and proteome data was employed to investigate regulatory 
relationships between TFs and their targets, improving the predictive power of GRNs 
of maize [18]. Nevertheless, in this example, only 17,862 unmodified proteins were 
detected across 33 maize tissues, and only 545 TFs with detectable protein abundance 
could be used to construct an independent GRN, thus limiting the thorough exploration 
of the complete regulatome [18].

The translatome, a middle layer between the transcriptome and the proteome, has 
received increasing attention recently because of its status as a more effective proxy 
for the proteome than the transcriptome [20]. Translatome research has been used to 
investigate multiple physiological processes in plants. In maize, the translatome and 
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transcriptome landscapes of seedlings showed that drought stress results in independ-
ent transcriptional and translational responses [21]. The translatome and transcriptome 
of maize leaves at the V4 stage revealed translational fractionation of maize subgenome 
genes potentially associated with heterosis [22]. Given the relatively low correlation 
between the transcriptome and proteome and the fact that the translatome represents 
a better proxy for the proteome, an inter-omic GRN between the translatome (for TFs) 
and the transcriptome (for targets) might better characterize the underlying molecular 
regulatory machinery of maize.

In this study, we therefore compiled a comprehensive translatomic and transcrip-
tomic database spanning most of the maize life cycle. Combining a spatiotemporally 
distributed translatome with transcriptome datasets, we constructed multiple GRNs at 
different omic levels to investigate the regulatome of maize (Additional file 1: Fig. S1). 
Translatome-related GRNs showed better performance than GRNs considering solely 
the transcriptome. We used the union GRN to verify known regulatory networks for 
kernel development and leaf photosynthesis. We also identified a previously unreported 
TF (ZmGRF6) associated with growth and defined an uncharacterized function of the 
TF ZmMYB31 related to drought response. Our multi-omics GRN represents a com-
prehensive regulatome of maize and underscores the complex functional landscape of 
plants.

Results
Comprehensive transcriptome and translatome data across maize development

To create an integrated and dynamic transcriptome and translatome atlas across maize 
development, we collected comprehensive transcriptome and translatome data from 33 
different tissues or developmental stages of the reference maize inbred line B73 (Fig. 1A, 
Table  S1). The transcriptome and translatome of 21 tissues were profiled previously 
using RNA-seq and ribosome profiling (Ribo-seq), respectively, as two biological rep-
licates [20, 23]. Here, we additionally obtained the transcriptome and translatome of 
bulk samples from 20 tissues (some tissues were identical to those described previously) 
using the same methods, each being a bulk from three independent biological replicates 
(each replicate contains three individual plants) (Fig. 2A). Transcriptome datasets across 
different tissues or stages exhibited high Pearson’s correlation coefficients, ranging from 
0.880 to 0.963, between the two replicates and the bulked samples; translatome datasets 
had Pearson’s correlation coefficients ranging from 0.789 to 0.973 (Additional file 1: Fig. 
S2). Moreover, the dominant size of ribosome-imprinted RNA fragments (RPFs) ranged 
from 26 to 30 nucleotides (nt) in most samples, with a clear 3-nt periodicity near the 
start and stop codon sites of coding sequences (Additional file 1: Fig. S3 and Fig. S4), 
confirming the reliability of these translatome datasets. These results suggest that we 
had collected high-quality translatomic and transcriptomic data across maize develop-
mental stages.

We then separately quantified transcript abundance from both the transcrip-
tome and translatome datasets. In general, we detected more genes at the tran-
scriptome level (Fig.  1B). In vegetative tissues, the roots and stems expressed more 
genes than leaves and endosperms at both the translatome and transcriptome levels 
(Fig.  1B, Additional file  1: Fig. S5A-5D). Reproductive tissues including ear, tassel, 
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inflorescence, embryo, and kernel expressed more genes than leaves, but fewer than 
roots (Fig. 1B, Additional file 1: Fig. S5A-5D). We classified all samples into several 
major categories according to tissue type: root, inflorescence, stem, seedling, kernel, 
tassel, shoot apical meristem (SAM), ear, and leaf (Fig. 1C). Only a small proportion 
of genes could be specifically detected by a single technology (RNA-seq or Ribo-seq), 
while most expressed genes (78.97–82.43%) were detected by both omics technolo-
gies (Fig.  1C), suggesting that the transcripts from most transcribed genes are also 
actively translated. The number of genes specifically expressed in a single tissue type 
(specifically expressed genes, or SEGs, referring to the sum of specifically translated 
genes and specifically transcribed genes) in each category ranged from 79 to 1545, 
with most being detected at a single omics level (Fig. 1D, Additional file 1: Fig. S5E). 
Because the number of samples in each tissue category varied, we used the mean 
number of SEGs to evaluate tissue-specific expression, finding greater numbers of 
mean SEGs in most reproductive organs (tassel, kernel, and ear) and a few vegetative 
organs (root and stem) than in other tissues (Fig. 1D, Additional file 1: Fig. S5E-5F).

Principal component analysis (PCA) demonstrated that leaf and endosperm sam-
ples cluster across different developmental stages; however, the translatomic pat-
terns of other tissues were ambiguous (Fig. 1E). To further characterize translatomic 
patterns of genes across different tissues, we performed a hierarchical clustering 

Fig. 1  Overview of the samples and datasets used in this study. A Samples collected across maize 
development. B Numbers of translated or transcribed genes detected across all samples. Yellow, transcribed; 
green, translated. C Number of genes in different tissue categories detected by RNA-seq or Ribo-seq. D Bar 
plot, number of genes specifically transcribed (yellow), specifically translated (green), or both transcribed 
and translated (light green) in a single tissue type across different tissue categories; the circular diagram 
refers to the mean value of specifically expressed genes (SEGs) after dividing by the sample number in each 
tissue category. E Principal component analysis (PCA) results for the translatome data of all maize samples. 
The colored circles indicate the respective tissues/stages of maize development: red (leaf ), green (kernel and 
embryo), yellow (seedling), purple (endosperm), light blue (e - ear, t - tassel, i - inflorescence and s - Shoot 
Apical Meristem), dark blue (root and stem). F Hierarchically clustered heatmap based on the translatome 
data from all maize samples
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analysis using the translatome data. We observed the clustering of translated genes 
from almost  green tissues including leaves and seedlings, while those translated in 
non-green tissues, including all other tissues, gathered into a second cluster (Fig. 1F). 
Additionally, the translatome and transcriptome of the same or similar tissues 
showed high correlation (Additional file  1: Fig. S6A), while correlation coefficients 
for the median abundance at the transcriptome and translatome levels across differ-
ent tissues ranged from 0.829 to 0.837 (Additional file 1: Fig. S6B). The abundance of 
most genes at the two omics levels showed variable correlation coefficients ranging 
from 0.5 to 1 across different tissues (Additional file 1: Fig. S6C). Notably, a few genes 
exhibited very low or even negative correlation coefficients between the two omics 
levels. In addition, the translational efficiency (TE) of most detectable genes across 
all tissues ranged from 0.25 to 4, with TE of genes in green tissues likely exhibiting 
greater instability (Additional file 1: Fig. S6D). These results illustrate the generation 
of a complex transcriptome and translatome atlas in this study.

Comprehensive regulatory landscape of maize inferred from multi‑omics gene regulatory 

networks (GRNs)

Plant development and phenotypic variation are controlled by accurate and complex 
gene regulatory networks (GRNs) [6]. To construct a genome-wide regulatome of maize 
for dissecting the molecular mechanisms underlying complex traits, we generated a 

Fig. 2  Genome-wide regulatory landscape of maize. A Construction of GRNs from two different data sources 
in maize. A mean GRN was constructed from the transcriptome and translatome of 21 tissues based on the 
mean expression levels from two biological replicates. A bulked GRN was constructed from the transcriptome 
and translatome of bulked samples from 20 tissues using the same methods, each bulked sample from 
three independent biological replicates. B Classification of different types of intra- and inter-omics GRNs. 
mmGRN and TTGRN represent intra-omics GRNs at the transcriptome and translatome levels, respectively, 
while TmGRN represents an inter-omics GRN between the translatome (TF) and transcriptome (Target). C 
Union GRN created by merging all GRNs (top 1 million edges), including both mean and bulked GRNs. D 
High-confidence network was generated by overlapping GRNs at network type level firstly (TT, TM, MM) and 
then merging the overlapped GRNs from different data sources (mean and bulked)
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comprehensive transcriptome and translatome dataset using two different data sources 
(the two separately sequenced replicates-rep1 and rep2, the mean expression  levels of 
which were used for the following analyses; bulked data from a sequencing library con-
structed from equivalent RNAs of three biological replicates) from 33 tissue or devel-
opmental stages (Fig. 2A). We collected information on all maize TFs from PlantTFDB 
(http://​plant​tfdb.​gao-​lab.​org/​tf.​php?​sp=​Ppe&​did=​Prupe.​I0045​00.1.p). We set 1,824 
and 1,787 TFs detectable at both the translatome and transcriptome levels as “regula-
tors” in groups mean and bulked, respectively (Fig. 2A). Accordingly, 26,158 and 25,291 
genes with detectable transcripts were set as potential “targets” across different groups 
(Fig.  2A). We constructed putative GRNs based upon the expression patterns of TF 
genes and the target genes of their encoded proteins for the two different datasets, rep-
resenting three types of intra- and inter-GRNs across different datasets (Fig. 2B). Intra-
omics GRNs at the transcriptome and translatome levels were named as mmGRNs 
(TF transcriptional level vs. target transcriptional level) and TTGRNs (TF translational 
level vs. target translational level), respectively, while inter-omics GRNs were named as 
TmGRNs (TF translational level vs. target transcriptional level) (Fig. 2B).

To characterize these intra- and inter-omics GRNs in maize, we employed network 
parameters such as transitivity, average path length, and module number to quantify the 
topological architecture of the different GRNs. TmGRNs showed the lowest transitivity, 
highest average.path.length, and fewest modules (nodes ≥5), but differences were mar-
ginal compared with mmGRNs and TTGRNs (Additional file 1: Fig. S7). Integration of 
different omics data sets can greatly improve the predictive power of GRNs [18]. We 
therefore merged all three types of GRNs (considering only the top one million edges 
from each GRN) from our two data groups to obtain 4,747,575 gene regulatory pairs 
(Fig.  2C; Additional file  13, which was also deposited at http://​zeasy​stems​bio.​hzau.​
edu.​cn/​datas​et.​html). We also used the overlap among the top one million edges of the 
mmGRNs, TTGRNs, and TmGRNs from each dataset to create a network comprising 
130,500 high-confidence regulatory pairs (Fig.  2D; Additional file  14, which was also 
deposited at http://​zeasy​stems​bio.​hzau.​edu.​cn/​datas​et.​html). These networks provide an 
unprecedented resource for a genome-wide dissection of the maize regulatome.

TmGRN and TTGRN outperform mmGRN, and TmGRN shows the best performance 

in multiple scenarios

To test the reliability of intra- and inter-omics GRNs, we analyzed the overlap between 
different types of GRNs and compared the results with those from a previous study [18]. 
TmGRNs and mmGRNs showed the highest overlap in all comparisons among the dif-
ferent types of GRNs (Fig.  3A, Additional file  1: Fig. S8). The number of overlapping 
edges detected in the three types of GRNs varied from 44,366 to 87,118 in the two data-
sets (Fig. 3A, Additional file 1: Fig. S8), each far more than the number of edges detected 
in GRNs built on the abundance of mRNAs and proteins in the previous study [18].

TFs usually bind to the promoter region of their target genes to regulate their 
transcription levels, thus defining the regulatome [25]. The translatome has been 
reported to show higher consistency with the proteome than with the transcrip-
tome [20]. Therefore, we hypothesized that TmGRNs might better illustrate the 
regulatome than mmGRNs. To test this hypothesis, we conducted a comprehensive 

http://planttfdb.gao-lab.org/tf.php?sp=Ppe&did=Prupe.I004500.1.p
http://zeasystemsbio.hzau.edu.cn/dataset.html
http://zeasystemsbio.hzau.edu.cn/dataset.html
http://zeasystemsbio.hzau.edu.cn/dataset.html
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comparison between different GRNs and the regulatome built using ChIP-seq data 
from 86 TFs, target genes of these 86 TFs had been identified in both a previous 
study and this study [26]. We used three different thresholds (top 1 million, edge 
weight ≥ 0.0003 and edge weight ≥ 0.01) to test this hypothesis. At the threshold 
of “top 1 million,” we determined that our different GRNs show significantly more 
overlap with ChIP-seq data than the control GRNs (randomly generated network 
with the same gene sets of TFs and targets) (Fig.  3B). Importantly, TmGRNs and 
TTGRNs all displayed significantly more overlap than mmGRNs with ChIP-seq 
data across the three thresholds (Fig. 3B, Additional file 1: Fig. S9A and Fig. S10A). 

Fig. 3  Comparisons of TmGRNs, TTGRNs and mmGRNs across different scenarios. A Overlap of mmGRNs, 
TmGRNs, and TTGRNs from mean data for the top 1 million edges. B Overlap between GRNs and ChIP-seq 
regulatory networks. The control consisting of TF-target pairs was generated randomly using the same 
TF sets and target sets for each dataset. The random TF-target pairs were generated 1,000 times for each 
GRN in each dataset. The average value of the overlaps between random targets and ChIP-seq targets was 
compared to the overlaps between GRN predictions and ChIP-seq targets using the χ2 test. In addition, 
because three types of GRN were constructed using the same TFs set and targets set in each dataset, the 
comparisons of overlapping targets among mmGRN, TTGRN, and TmGRN were also performed using the 
χ2 test. C The overlapped target number for each TF in 3 types of GRNs from both mean and bulked data 
(Student paired t test). D The overlaps between GRN and ChIP-seq for each TF after normalization by GRN size 
of each TF (Student paired t test). E The overlaps between GRN and ChIP-seq for each TF after normalization 
by ChIP-seq target number (Student paired t test). F, G Target comparisons between different GRNs and 
ChIP-seq for FEA4 (F) and KN1 (G). Top 100, top 200, and top 500 targets were considered. Significant 
differences were determined using the paired Student t test. H Simple Enrichment Analysis (SEA) [24] for the 
1-kb sequences upstream for the start codons of the top 100 targets of 11 TFs in three types of GRNs, the 
center line in box represents the median. TP: Number of primary sequences matching the motif / number 
of primary sequences (percentage of primary sequences matching the motif ); primary sequences are from 
the predicted targets. FP: Number of control sequences matching the motif / number of control sequences 
(percentage of control sequences matching the motif ); control sequences are from the genes that randomly 
selected in the set of expressed genes. I Comparisons of GRN weights of three types of GRNs at different 
thresholds, significant differences were determined using the paired Student t test, center line in box 
represents the median. In all tests of significance above, “*” represents P < 0.05; “**” represents P < 0.01; “***” 
represents P < 0.001
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Compared to mmGRNs, TFs in TmGRNs and TTGRNs were more likely than those 
in mmGRNs to have more targets that were also detected in the ChIP-seq regu-
latome (Fig. 3C–E). However, TFs in TmGRNs have more targets also detected in the 
ChIP-seq regulatome than those in TTGRNs in some scenarios (Fig.  3C–E, Addi-
tional file  1: Fig. S9B-9G, Fig. S10B-10G, and Table  S2). For example, four classi-
cal TFs (FASCIATED EAR4 [FEA4], KNOTTED1 [KN1], OPAQUE11 [O11], and 
ABSCISIC ACID INSENSITIVE 19 [ZmABI19]) showed more overlapping targets 
with ChIP-seq data in the TmGRNs than they did in the mmGRNs, and these TFs 
also showed more overlapping targets with ChIP-seq data in the TTGRNs than they 
did in the mmGRNs, except for O11 (Fig. 3F, G and Additional file 1: Fig. S11). We 
also noticed that TmGRNs have more overlap than TTGRNs with ChIP-seq data in 
multiple scenarios, although the significance was weak in a few cases (Fig.  3C–F, 
Additional file 1: Fig. S9-S11). Furthermore, we used area under the receiver opera-
tor characteristic curve (AUROC) and area under the precision-recall curve (AUPR) 
to evaluate the performance of each GRN (against ChIP-seq targets as benchmark) 
(Additional file 1: Fig. S12). The AUROC values ranged from 0.538 to 0.587, which 
were higher than the random predictions with a value of 0.500 and consistent to the 
previous study (Additional file 1: Fig. S12) [13]. Most values for AUROC and AUPR 
in TmGRNs and TTGRNs were higher than in the mmGRNs (Additional file 1: Fig. 
S12). The TmGRNs showed highest AUROC and AUPR values in the mean data 
source (Additional file 1: Fig. S12).

TFs generally bind to a specific region (motif ) in the promoter of their target 
genes [25]. Although GRNs cannot distinguish between direct and indirect target 
genes, a certain proportion of direct targets should be detected. To test whether 
GRNs can capture the binding motifs of TFs, we extracted the top 100 target genes 
for 11 TFs (including the classical TFs O11 and Teosinte branched1 [Tb1], as well 
as TFs from the AUXIN-RESPONSE FACTOR [ARF], Homeodomain leucine zip-
per [HD-ZIP], ETHYLENE-RESPONSE FACTOR [ERF], MYB, basic leucine zipper 
[bZIP], basic helix-loop-helix [BHLH], and Golden2-like [G2-like] families) from 
the mmGRNs, TTGRNs, and TmGRNs. The 11 TFs are representative because 
they are from multiple different gene families and have well-known but divergent 
binding motifs (JASPAR, https://​jaspar.​gener​eg.​net/). Satisfyingly, known motifs 
were identified in the 1-kb upstream of the start codons of these target genes using 
MEME [24]. Notably, we observed highest positive ratios in TmGRNs than in other 
GRNs (Fig. 3H, Table S3), suggesting that more real direct targets can be predicted 
by TmGRNs. In addition, we compared weights of overlapping GRN predictions 
(overlaps of the three types of GRNs) in mmGRNs, TTGRNs, and TmGRNs across 
different thresholds (top 0.2 million edges, 0.6 million edges, and 1 million edges) 
and observed that TmGRNs and TTGRNs have significantly higher weights than 
mmGRNs at each edge level (Fig.  3I). TmGRNs showed highest weights in most 
thresholds (Fig. 3I). These results indicate that translatome-related GRNs show bet-
ter performance than mmGRNs that only based on transcriptome, and inter-omics 
GRNs likely outperform intra-omics GRNs for accurately representing the regu-
latome in maize.

https://jaspar.genereg.net/
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The multi‑omics GRNs illustrate the potential functional landscape of maize

To test whether the multi-omics GRNs convey biological meaning, we sought to validate 
our union GRN using some well-known genes and regulatory networks. Kernel size is an 
important agronomic trait with a complex regulatory mechanism [27, 28]. We extracted 
a GRN sub-network of 11 well-known kernel-related TFs from our union GRNs, the 
regulatory relationships of these 11 TFs had been systematically investigated in previ-
ous studies [29–37]. This kernel-related GRN sub-network contained 75 functional 
genes associated with kernel size that formed 229 gene-to-gene regulatory relationships 
[27, 29–90]. Of these 229 network edges, 64 (27.9%) were supported by previous stud-
ies based on different types of experiments, including ChIP-seq, RNA-seq, reverse tran-
scription quantitative PCR (qRT-PCR), dual-luciferase reporter (DLR) assays, and yeast 
one-hybrid (Y1H) assays (Fig. 4A, Table S4), at a significantly higher (χ2 test, P value = 
4.42×10−7) rate than by chance, suggesting the reliability of GRN predictions for bio-
logical inference.

Additionally, we used the translational abundance, as estimated from Ribo-seq data, 
to perform a hierarchical clustering analysis for 86 TFs with publicly available ChIP-seq 
data (Additional file 1: Fig. S13A) [26]; of which 29 were specifically translated in leaves 
(Additional file 1: Fig. S13A) [26] and might be associated with photosynthesis. A GRN 
sub-network of these 29 TFs revealed that they can target 23 LHC-like genes, which 

Fig. 4  GRNs reconcile well-known regulatory networks. A Network of genes previously identified as 
related to kernel development re-built using GRNs. B GRN sub-network of leaf-specific TFs and chlorophyll 
a/b binding protein genes verified by ChIP-seq datasets. C Transient expression assay showing that the 
transcription output of LHCB7 and PSB29 promoters is upregulated by COL8 and GLK1 proteins. D, E GO 
enrichment for targets of kernel (D) and leaf related TFs (E)
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encode light-harvesting chlorophyll a/b binding proteins (Fig.  4B, Table  S5). Notably, 
about 31.2% of the regulatory relationships for these TFs in GRNs could be also detected 
by ChIP-seq (Fig.  4B, Table  S5), a number that is significantly higher (χ2 test, P value 
= 4.8×10−4) than random, suggesting the high accuracy of the GRNs. We noticed that 
TmGRN and TTGRN form more regulatory pairs for these TFs that could be confirmed 
by ChIP-seq compared to the mmGRN (Additional file 1: Fig. S14). Interestingly, four 
key TF genes including CONSTANS 8 (COL8), G2, G2-like1 (GLK1), and COL2 were 
shown to target 5-11 LHC-like genes detected by both GRNs and ChIP-seq, suggesting 
that their encoding proteins might have roles in photosynthesis (Fig. 4B). We selected 
two LHC-like genes (LHCB7 and PSB29) regulated by COL8 and GLK1 and performed 
a transient luciferase reporter assay to verify their regulatory relationships. The results 
demonstrated that COL8 and GLK1 indeed appear to contribute to the transcription of 
LHCB7 and PSB29 (Fig. 4C). Interestingly, we found that COL8 and GLK1 are likely to 
regulate the transcription of LHC-like genes independently (Additional file 1: Fig. S13B). 
Furthermore, we uncovered the 128 regulatory pairs that had not been previously iden-
tified by ChIP-seq (Fig.  4B and Fig. S15A). We selected two key TF genes (BHLH145 
and HB38) whose encoded proteins had more target genes, as well as two key target 
genes (Zm00001d020002, an ortholog of AtLHCB7; and Zm00001d024372, an ortholog 
of AtLHCA1) being targeted by more TFs for validation by luciferase reporter assays in 
maize protoplasts (Additional file  1: Fig. S15A). We determined that BHLH145 could 
upregulate the transcription of Zm00001d020002 and Zm00001d024372, while HB38 
only induced that of Zm00001d020002 (Additional file 1: Fig. S15B and 15C), thus con-
firming the reliability of our constructed GRNs.

The characteristics of target genes reflect the potential biological functions of their 
upstream regulators. Here, we extracted the predicted targets of the 11 kernel-related 
TFs and the 29 TFs specifically expressed in leaves from union GRN, respectively. 
Accordingly, one thousand target genes were randomly selected from the two target sets 
to perform Gene Ontology (GO) enrichment. The target genes for TFs related to ker-
nel development were significantly enriched in starch metabolic process (Fig. 4D). Simi-
larly, the target genes of TFs specifically translated in leaves were significantly enriched 
in chloroplast envelope (Fig. 4E), suggesting that target prediction using GRNs is rela-
tively accurate. Overall, the merged multi-omics GRNs constructed in our study appear 
to represent the potential functional landscape of maize with good accuracy. In addi-
tion, we identified specifically translated TFs and target genes as being simultaneously 
detected in specific tissues (Additional file  1: Fig. S16). Multiple sub-GRNs that more 
likely to exist in leaves, roots, SAM/embryo, and endosperm were extracted from the 
union GRN (Additional files 15, 16, 17 and 18, which were also deposited at http://​zeasy​
stems​bio.​hzau.​edu.​cn/​datas​et.​html). These specific regulatory networks may be helpful 
in investigating the functional landscape of these specific tissues in maize.

Loss of ZmGRF6 function interrupts the expression of phytohormone‑related genes 

and affects plant architecture

The GROWTH-REGULATING FACTOR (GRF) family is a small, plant-specific fam-
ily of TFs. However, understanding of their functions is limited, which promoted us to 
construct a GRF sub-network based on union GRN. GO enrichment of GRF targets in 

http://zeasystemsbio.hzau.edu.cn/dataset.html
http://zeasystemsbio.hzau.edu.cn/dataset.html
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the GRN revealed that these targets are mainly associated with developmental processes 
and cell division (Fig. 5A). The regulatory landscape of the GRF family exhibited diverse 
growth-related functions in maize (Fig. 5B). GRF TFs target many genes with functional 
annotations associated with the development of roots, the SAM, ears, leaves, and plant 
height, as well as flowering and oil content (Fig. 5B). These GRF GRNs provide support-
ing evidence for us to hypothesize that GRFs function in the development of maize plant 
architecture.

To test the hypothesis inferred from the GRNs, we selected GRF6 (Zm00001d045533), 
whose protein contains a conserved QLQ (glutamine, leucine, glutamine, IPR014978) 
domain and a WRC (tryptophan, arginine, cysteine, IPR014977) domain located within 
its N-terminus and targets multiple genes related to hormones such as auxin, gibberel-
lin (GA), and abscisic acid (ABA) (Fig. 6A). Multiple targets predicted by GRN showed 
transcript patterns similar to the translation pattern of ZmGRF6, except the genes 
Dwarf plant 3 (D3), Gibberellin 2-oxidase6 (ZmGA2ox6), Abscisic acid 8’-hydroxylase1 
(ABH1), and Small auxin up RNA39 (SAUR39), which might be related to the function 
of GENIE3 that can reveal non-linear relationships and both positive and negative linear 
relationships (Fig. 6B) [13]. We used the clustered regularly interspaced short palindro-
mic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated genome editing to 
obtain a loss-of-function mutant of the ZmGRF6 gene with a 2-bp deletion in the second 
exon, causing a frameshift mutation in the amino acid sequence (Fig. 6C). We performed 
RNA-seq on the wild type (KN5585) and mutant (grf6) and identified 1173 (P < 0.05) 
differentially expressed genes (DEGs) (Table S6). The overlap between DEGs and pre-
dicted GRF6 targets in union GRN was significantly higher than the random control (χ2 
test, P = 0.041). Moreover, the overlap between DEGs and predicted GRF6 targets in 
TmGRNs and TTGRNs was more than that in mmGRNs (Additional file 1: Fig. S17). The 
transcript levels of ARFTF30 and Zm00001d039120 (encoding an auxin-like protein) 
were significantly downregulated in the grf6 mutant (Fig. 6D, Additional file 1: Fig. S18B 
and 18C), suggestive of potentially decreased auxin contents in the mutant. Conversely, 

Fig. 5  Regulatory landscape of the GRF family. A GO enrichment analysis for targets of the GRF family 
suggests that GRF TFs are associated with the cell cycle and development. B GRNs showing that members of 
the GRF family are likely related to the development of several organs in maize
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transcript abundance of SAUR39 was promoted in the knock-out mutant (Fig. 6D, Addi-
tional file 1: Fig. S18B and 18C), suggesting that SAUR39 may act as a negative regulator 
of auxin in maize. D3, a classic gene controlling GA biosynthesis, was upregulated in the 

Fig. 6  ZmGRF6 likely regulates the expression of hormone-related genes and affects plant architecture of 
maize. A GRNs indicate that ZmGRF6 targets some well-known phytohormone genes. B Translation pattern of 
ZmGRF6 and transcription patterns of its potential targets across different tissues. C CRISPR knock-out mutant 
of ZmGRF6. D Differential expression analysis based on RNA-seq in the mutant and wildtype. E, F Phenotypes 
of WT (KN5585) and grf6 mutants; scale bar: 10 cm (E) and 2 cm (F). G grf6 mutant maize plants grown 
in Hainan (Ngrf6=10, NWT=16) and Hubei (Ngrf6=40, NWT=34), China, have significantly larger leaf angles 
than their WT (KN5585) counterparts. Significant differences were determined using the Student t test. “**” 
represents P < 0.01; “***” represents P < 0.001
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mutant plants (Fig. 6D, Additional file 1: Fig. S18B and 18C), while ZmGAox6, control-
ling GA inactivation, was downregulated (Additional file 1: Fig. S18A and 18B), suggest-
ing a potentially higher GA content in the mutant. In addition to genes related to auxin 
and GA, we also detected the downregulation of ABH1, a gene participating in ABA 
degradation (Fig. 6D, Additional file 1: Fig. S18B and 18C). Notably, we observed that 
the plant architecture of the grf6 mutant was substantially different from that of its WT 
(KN5585) counterparts (Fig. 6E, Additional file 1: Fig. S19). Interestingly, the leaf angle 
in the grf6 mutant was significantly larger than that in the WT (Fig. 6F, G). These results 
suggest that mutation of ZmGRF6 likely perturbs phytohormone levels and affects the 
plant architecture of maize.

ZmMYB31 may regulate the drought response through ABA and secondary metabolism 

pathways

MYB family members are among the most abundant and important TFs in plants [91], 
whose regulatory networks can be inferred from our GRNs. To dissect the functions of 
the MYB family, we constructed a GRN sub-network of MYB TFs to investigate their 
potential targets across the genome (Additional file 1: Fig. S20, Table S7). GO enrich-
ment analysis of GRN targets (showing overlap in the three types of GRN, weight ≥ 
0.05) for MYB TFs showed that they mainly participate in developmental processes, cell 
division, biosynthesis of microtubules and fibers, and abiotic stimulus (Additional file 1: 
Fig. S21).

Specifically, the GRN for ZmMYB31 indicated that this TF regulates multiple genes 
related to jasmonic acid biosynthesis and the ABA pathway, suggesting a function in 
the responses to drought stress and salt stress (Fig.  7A). These target genes exhibited 
similar expression patterns to ZmMYB31 (Fig.  7B). Fortunately, we obtained an ethyl 
methanesulfonate (EMS) mutant of ZmMYB31 with an early stop codon in the coding 
region (Fig.  7C) [92]. RNA-seq of the WT and mutant (myb31) identified 3511 DEGs 
(P < 0.05) (Table  S8), and the overlap between DEGs and GRN targets of ZmMYB31 
showed a significant difference compared with the random control (χ2 test, P = 0.046). 
The homologs of Glutathione transferase11(GST11), GST13, Laccase13 (LAC13), and 
mitochondrial phosphate transporter1 (MPT1) in Arabidopsis have been evidenced 
to be associated with oxidative stress, water deprivation, or salt stress [93]. Thus, we 
hypothesized that the myb31 mutant is likely to be more sensitive to water deprivation 
or salt stress. Cleavage Under Target & Tagmentation (CUT&Tag), a new technology 
that reveals DNA-protein interactions, was used to identify the binding sites of MYB31 
genome-wide. We established that the chromatin of the genes HB12 (Homeobox-tran-
scription factor 12), ZmRZPF34 (Ring zinc-finger protein 34, Zm00001d027649), and 
ZmCAPE5 (Zm00001d018322) is directly bound by MYB31 (Fig. 7E–G and Additional 
file 1: Fig. S22; Table S9). Loss of MYB31 function increased the expression of ZmCAPE5 
(Fig.  7D), a gene homologous to AtCAPE5 (cysteine-rich secretory proteins, antigen 5, 
and pathogenesis-related 5), which has been reported to negatively regulate salt stress 
tolerance in Arabidopsis [94]. Mutation in ZmMYB31 inhibited the expression of HB12 
and ZmRZPF34, suggesting a direct positive regulation (Fig. 7D). In Arabidopsis, ATHB5 
(HOMEOBOX PROTEIN 5, homolog of the maize gene HB12) and ATRZPF34 (homolog 
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of ZmRZPF34) function in the ABA response [95]. Therefore, decreased expression of 
HB12 and ZmRZPF34 in the myb31 mutant is likely to decrease the sensitivity of maize 
to ABA and inhibit stomatal closure during drought stress.

To validate the effect of ZmMYB31 under drought stress conditions, we performed 
drought treatment and re-watering experiments. The myb31 mutant was more sensitive 
to drought stress than its wild-type counterpart (Fig. 7H). Furthermore, we conducted 
association mapping to test for an association between genomic variation in ZmMYB31 
and the survival rate of seedlings of different inbred lines [96], which showed that multi-
ple single-nucleotide polymorphisms (SNPs) distributed in the gene body of ZmMYB31 
are significantly associated with drought tolerance (Fig. 7I, J). These results support an 
important role for ZmMYB31 in maize drought tolerance, confirming the hypothesis 
predicted by the GRNs.

Flavonoids and lignin are two major metabolites of the phenylpropanoid pathway [97]. 
Increased accumulation of flavonoids can lead to enhanced tolerance against drought 

Fig. 7  ZmMYB31 regulates the expression of ABA-related genes, potentially affecting the maize drought 
response. A ZmMYB31 targets multiple genes likely associated with the abiotic stress response. B ZmMYB31 
shows a similar expression pattern as the potential targets. C An EMS mutant of ZmMYB31 with an early 
stop codon resulting in premature termination of translation. D Differential expression analysis of potential 
target genes in the mutant and WT determined by RNA-seq. E–G ZmMYB31 targets HB12 (E), ZmRZPF12 (F), 
and ZmCAPE5 (G). Both CUT&Tag and RNA-seq data support the regulatory relationships inferred from the 
GRNs. H The myb31 mutant and WT exhibit significantly different drought responses, as determined by their 
survival rates (data are means ± SD; three replicates; paired Student’s t test; “**” represents P < 0.01); scale bar, 
10 cm. I, J ZmMYB31 is significantly associated with survival rate after drought treatment in maize inbred lines 
(association analysis in 347 maize lines using a general linear model [GLM])
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and oxidative stress in Arabidopsis [98, 99]. Transcriptome levels of Phenylalanine 
ammonia lyase7 (PAL7) and Cinnamate-4-Hydroxylase (ZmC4H, Zm00001d012510), 
two key genes encoding enzymes from the upstream portion of the phenylpropanoid 
pathway, were likely downregulated in the myb31 mutant (Fig.  8A, C). Importantly, 
ZmMYB31 directly bound to the promoter regions of PAL7 and ZmC4H, suggesting 
that ZmMYB31 directly modulates PAL7 and ZmC4H transcription (Fig. 8B, D). There-
fore, we suspected that ZmMYB31 would affect the drought tolerance of maize through 
effects on the phenylpropanoid pathway. By combining our GRNs with public ChIP-seq 
data for 104 TFs [26], we obtained a regulatory network for PAL7, ZmC4H, HB12, and 
ZmRZPF34 (Fig. 8E). Three NAC (NAM, ATAF, and CUC) TF genes in the regulatory 
network showed differential expression between the myb31 mutant and WT (Fig. 8F and 
Additional file 1: Fig. S23). Furthermore, the three TFs (ZmNAC33, Stress-induced NAC 
13 [ZmSNAC13] and NACTF49) all are known to positively regulate drought tolerance 
[100–102], and NACTF49 also is targeted directly by MYB31. These results suggest that 
ZmMYB31 likely regulates the drought tolerance of maize through ABA signaling and 
the phenylpropanoid pathway (Fig. 8G).

Discussion
Although massive amounts of transcriptomic data have been generated in maize [12], 
an atlas at the translatomic level is still lacking, and inter-omics regulatory networks 
between the translatome and transcriptome have not been assembled in eukaryotes. In 
this study, we collected close-to-complete translatomic data spanning most tissues and 
growth stages of maize using Ribo-seq. Combining these datasets with transcriptomic 
data for the corresponding samples, we constructed a comprehensive transcriptome and 

Fig. 8  ZmMYB31 modulates the phenylpropanoid pathway of maize drought response. A, B RNA-seq and 
CUT&Tag data showing that Phenylalanine ammonia lyase7 (PAL7) is positively regulated by ZmMYB31 (data 
are means ± SD; three replicates, “**” represents P < 0.01). C, D RNA-seq and CUT&Tag showing that ZmC4H 
(Zm00001d012510) is likely to be positively regulated by ZmMYB31 (data are means ± SD; three replicates). 
E Putative regulatory network curated from public ChIP-seq data [26]. F Some TF genes in E are targeted by 
MYB31 and show differential expression between mutant and WT. G Proposed model of ZmMYB31 regulated 
drought response through ABA signaling and the phenylpropanoid pathway
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translatome dataset of maize development. From this dataset, we identified 35,524 trans-
lated genes and 41,604 transcribed genes (FPKM >0) detectable in at least one tissue or 
sample.

TFs generally bind to specific DNA sequences in the genome to control chromatin sta-
tus and transcription [25], which not only indicates a direct interaction between proteins 
and DNA, but also suggests a possible correlation between protein abundance of TFs 
and mRNA levels of their target genes. Several methods based on transcript abundance 
have been used to predict GRNs involved in plant growth and developmental processes 
[14–16]. However, the transcript abundance of TF genes is not always consistent with 
their protein abundance because the latter is buffered by multifaceted regulatory mecha-
nisms in different biological processes [19], which may greatly reduce the accuracy of 
GRN prediction. Despite efforts to combine multiple omics datasets including mRNA, 
protein, and phosphoprotein [18], the low throughput of protein mass spectrometry 
(MS) restricts the breadth of GRNs. Here, we used a translatomic atlas, an important 
linker-by-proxy between mRNA and protein, to assess the protein levels of TFs and 
constructed inter-omics TmGRNs by combining these data with the transcript levels of 
target genes (Fig. 2B). We obtained 1,867 TFs and 26,738 potential target genes (maize 
V4 version genes, AGPv4) that were used to construct a genome-wide GRN containing 
4,747,575 regulatory pairs (union GRN) and 130,500 high-confidence regulatory pairs, 
representing an almost complete multi-omics regulatome landscape of maize (Fig. 2C, 
D). We compared the union GRN to the existed GRN that constructed using the maize 
V3 version genes before [13, 18]. Most regulatory pairs (83.65%) in union GRN could be 
transformed into V3 version, and 8.79 and 36.48% of these pairs could be also detected 
by GRNs constructed by Huang et al. and Walley et al., respectively (Additional file 1: 
Fig. S24) [13, 18]. Although the overlapped rates are significantly higher than that of ran-
dom control, they are relatively low. This might be affected by different tissue types, sug-
gestive of the dynamic and complicated regulatome across maize.

TmGRNs and TTGRNs showed better performance compared to intra-omics 
mmGRNs based only on transcript abundance. In multiple scenarios, TmGRNs even 
showed better performance than TTGRNs. We predicted a greater number of regulatory 
pairs by the TmGRN compared to inter-omics pmGRNs (existed GRN constructed by 
Walley et al. previously) between protein levels and transcript levels [18], because there 
was more overlap between regulatory pairs identified in both mmGRNs and TmGRNs 
than between regulatory pairs identified in both mmGRNs and pmGRNs combining 
protein and mRNA levels. All these results demonstrate that translatome-related GRNs 
would be the better representative of regulatome.

GRNs are useful tools for investigating the relationships between TFs and other genes 
when RNA-seq (for mutant and WT) or ChIP-seq data are not available [12]. How-
ever, there remain some problems in the interpretation of their results. First, GRNs 
can present many false positives. In general, networks constructed using limited num-
ber of input samples tend to show lower performance and introduce more false posi-
tives. With a limited number of samples, networks tend to have lower weight values and 
reduced quality of prediction, particularly when more input genes are used during net-
work construction. As an alleviation measure, the integration of multiple omics datasets 
greatly improves the predictive power of GRNs, and increasing sample size also has a 
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positive effect on network performance [12, 18]. Therefore, we constructed mmGRNs 
(transcriptome level), TmGRNs (inter-omics between translatome and transcriptome), 
and TTGRNs (translatome level) based on different groups of data—the mean and 
bulked—to improve the accuracy of our predictions (Fig.  2A, B). Further overlapping 
different types of GRNs and improving the threshold of GRNs remains an effective way 
of increasing the rate of positive predictions. Incorporating other algorithms, such as 
weighted gene co-expression network analysis (WGCNA), is also helpful in reducing the 
number of false positives [103]. Another problem with GRNs is their inability to dis-
tinguish between direct and indirect targets. It is essential to verify direct regulatory 
relationships of high-confidence targets using molecular assays such as electrophoretic 
mobility shift assay (EMSA), DLR, and Y1H. An in silico tool called TDTHub (TF Bind-
ing Site-Discovery Tool Hub) was recently developed for the analysis of TF binding sites 
in plants, which may help distinguish between direct and indirect target genes [104].

GRNs can be utilized to help predict the function of TFs. For example, MYB31 was 
reported to affect total lignin content and downregulate the expression of several genes 
related to monolignol biosynthesis when overexpressed in Arabidopsis, causing abnor-
mal growth [105]. Further analysis suggested that overexpression of MYB31 in Arabi-
dopsis positively regulated the expression of C-repeat-binding-factor (CBF) genes and 
enhanced tolerance to chilling and oxidative stress [106]. In this study, we showed that 
maize MYB31 targets ABA-related genes (HB12 and ZmRZPF34) and phenylpropanoid-
related genes (ZmC4H and PAL7) through either direct or indirect means, suggesting a 
potentially important role of ZmMYB31 in drought response. Multiple studies support 
the existence of ABA-signaling-mediated stomatal movement in response to drought 
stress [107, 108]. Flavonoids and lignin are metabolites produced from the phenylpro-
panoid pathway, both of which are associated with drought tolerance in plants [98, 99, 
109]. Therefore, ZmMYB31 may affect the drought response through two pathways. 
We noticed that ZmMYB31 acts as a negative regulator to reduce major lignin-derived 
compounds but raised the contents of other lignin compounds, including ferulic acid 
and p-hydroxybenzaldehyde. Changes in expression of many metabolism-related genes 
during overexpression of ZmMYB31 might therefore be responsible for changes in the 
drought response of maize plants [105]. In contrast to the negative regulation by MYB31 
of the genes encoding 4-coumarate 3-hydroxylase (C3H), 4-coumarate-CoAligase (4CL), 
ferulate-5-hydroxylase (F5H), caffeic acid O-methyltransferase (COMT), caffeoyl shiki-
mate esterase (CSE), and cinnamoyl-CoA reductase 3 (CCR3) [105, 110, 111], we found 
that ZmC4H and PAL7 expression are positively regulated by MYB31. This difference is 
probably associated with the different functions of the encoded enzymes upstream of 
the phenylpropanoid pathway. Additionally, we utilized our multi-omics GRNs to pre-
dict and validate the function of the TF GRF6. Together, these results suggest that multi-
omics GRNs can reveal the functional landscape of maize.

Conclusions
In summary, we compiled an almost complete set of translatomic and transcriptomic 
datasets for the maize reference inbred line B73 and established a high-quality multi-
omics GRN covering most tissues and developmental stages throughout the life cycle of 
the plant. Inter-omics GRNs constructed by combining translatome and transcriptome 
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data showed better performance than those only based on single omics data in most 
cases. We identified the growth regulator ZmGRF6 and broadened our understanding 
of the function of ZmMYB31 in the drought response using the GRN. The molecular 
mechanisms of the two TFs interpreted in this study will be helpful for improvement of 
agronomic traits, especially for plant architecture and drought tolerance.

Methods
Plant materials

Twenty-one tissues were profiled previously as two biological replicates; detailed infor-
mation for these samples is summarized in supplemental Table S1. In addition, twenty 
bulk samples were collected from maize plants grown in the greenhouse under a 12-h 
light/12-h dark photoperiod at 25 °C (Table S1). Three replicates were collected per tis-
sue, and each replicate was from three individuals. Equal amounts of the three replicates 
were combined to make the bulk sample that was analyzed by Ribo-seq and RNA-seq. 
The translational levels of genes in the identical tissues between two times of sampling 
collection were used to measure the correlation coefficient (Pearson) to assess the data 
reliability.

RNA extraction and sequencing

Total RNA was isolated from all tissues using a Direct-zol RNA Microprep kit (Zymo 
Research) following the manufacturer’s instructions. Reverse transcription was per-
formed to synthesize first-strand cDNAs as templates for preparing mRNA-seq libraries. 
All RNA-seq libraries were constructed using a Ribo-Zero rRNA Removal kit followed 
by a TruSeq Stranded Total RNA Library Prep Plant (Illumina) and then sequenced on 
an Illumina NovaSeq platform with PE150.

Ribosome profiling (Ribo‑seq)

Tissue samples of at least 5 g each were pulverized and dissolved in extraction buffer 
(44 mM Tris-HCl, pH 7.5, 175 mM KCl, 13 mM MgCl2, 100 mg/mL cycloheximide, 15 
mM 2-mercaptoethanol, 1% [v/v] Triton X-100, 10 units/mL DNase I). The superna-
tant was treated with RNase I (10 units/μg RNA) at room temperature for 1 h and then 
the reaction was terminated by adding RNase inhibitor (20 units/μL). The solution was 
immediately transferred into a MicroSpinS-400 column to enrich for RNA-ribosome 
complexes (monosomes). Ribosome-protected fragments were extracted from samples 
using a miRNeasy RNA isolation kit (Qiagen) according to the manufacturer’s instruc-
tions. After removing rRNA, the remaining RNAs were used to construct libraries using 
a strategy for small RNAs, which were sequenced on an Illumina HiSeq X Ten platform.

Data analysis

For RNA-seq, clean data from all samples were mapped to the B73 AGPv4 reference 
genome using HISAT2 (hisat2/2.1.0) with default parameters [112]. Unique reads were 
used to measure expression levels of genes using StringTie (StringTie/1.3.0-foss-2016b) 
[113] with the parameter “-G -e -A”.

For Ribo-seq, quality control of reads was performed using FASTX_Toolkit-0.0.14 
(http://​hanno​nlab.​cshl.​edu/​fastx_​toolk​it/​index.​html), and clean reads were then aligned 

http://hannonlab.cshl.edu/fastx_toolkit/index.html


Page 19 of 26Zhu et al. Genome Biology           (2023) 24:60 	

to the rRNA reference sequences using Bowtie-1.1.2 [114] to remove rRNA sequences. 
The remaining reads were mapped to the maize AGPv4 reference genome using HISAT2 
(hisat2/2.1.0) [112], and the expression levels of genes were measured using StringTie 
(StringTie/1.3.0-foss-2016b) [113] using the unique reads.

Establishment of GRNs

The abundance of transcripts and ribosome-protected products of corresponding genes 
in the bulked samples were used to construct GRNs. In parallel, the mean expression 
values from rep1 and rep2 were also be used to construct GRNs. Genes with FPKM ≥ 1 
in at least one tissue and non-zero values in at least three tissues were used to construct 
GRNs. These GRNs were constructed on the basis of the expression matrix using the 
classic software GENIE3 [115] with the random forest algorithm. Regulatory pairs under 
the top 1 million edges in GRNs were considered.

Transient luciferase reporter assay

Transient expression assays were performed in Nicotiana benthamiana leaves, as pre-
viously described [116]. The promoters of LHCB7 and PSB29 were individually cloned 
upstream of the firefly luciferase (LUC) reporter gene via the KpnI and PstI sites of the 
pGreenII 0800-LUC vector. The full-length coding regions of COL8 and GLK1 were 
cloned into the pGreenII 62-SK vector downstream of the 35S promoter between the 
EcoRI and XhoI restriction sites as effector constructs. The two types of plasmids were 
then individually transformed into Agrobacterium (Agrobacterium tumefaciens) strain 
GV3101. Equal volumes of cells of different combinations of strains were mixed and 
co-infiltrated into N. benthamiana leaves. After 48–72 h, co-infiltrated leaves were col-
lected and sprayed with 100 mM luciferin. After leaves were placed in darkness for 5 
min, image acquisition was performed using a low-light, cooled, charge-coupled device 
imaging apparatus.

Transient expression assays were also performed in maize leaf protoplast. Protoplast 
isolation and transfection were performed as previously reported [26]. The promoters of 
Zm00001d020002 and Zm00001d024372 were individually cloned into pGreenII 0800-
LUC vector using the same method as above. The full-length BHLH145 and HB38 cod-
ing sequence were also cloned into pGreenII 62-SK vector using the same method as 
above. The same amount of plasmid DNA from the appropriate pairs of constructs was 
mixed and transfected into protoplasts. After 14h (dark condition), the protoplasts were 
collected and processed using a Dual-Luciferase Reporter Gene Assay Kit (YEASEN) 
according to the manufacturer’s instructions. The LUC and REN activity levels in the 
resultant were detected in a microplate reader.

CRISPR/Cas9‑mediated gene editing

Two guide RNAs (gRNAs) targeting the second exon of ZmGRF6 were designed using 
CRISPR-P [117]. The vector carrying the two gRNAs was introduced into immature 
maize “KN5585” embryos using Agrobacterium-mediated transformation by WIMI 
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Biotechnology Co., Ltd. Heterozygous T1 plants were self-pollinated, and homozygous 
mutants were obtained from the segregating population (T2).

CUT&Tag and bioinformatics analyses

The full-length coding sequence of ZmMYB31 was cloned into the pM999 vector 
downstream of the cauliflower mosaic virus (CaMV) 35S promoter and upstream 
of the GFP sequence via the XbaI restriction site. Protoplast isolation and transfec-
tion with the resulting plasmid were performed as previously described [26]. Pro-
toplast cells with successful expression (based on GFP fluorescence) of the plasmid 
were lysed, and the following steps were performed using a Hyperactive Universal 
CUT&Tag Assay Kit (Vazyme) based on the manufacturer’s guidelines. Successfully 
constructed libraries were sequenced on an Illumina NovaSeq platform. Clean reads 
were mapped to the B73 reference genome (AGPv4) using Bowtie2 software [118]. 
A search for high-confidence peaks (peaks P < 1×10−5) was performed using MACS 
with the parameters “callpeak -g 2.2e+9 -s 150 -B -p 1e-5 -f BAMPE” [119]. Distribu-
tion of peaks over the entire genome was analyzed using ChIPseeker [120]. If a peak 
was located within the range of 3 kb upstream to 3 kb downstream of a gene, then this 
gene was assumed to be the target of the protein (ZmMYB31-GFP in this case).

RNA‑seq for mutants and differential expression analysis

Leaf samples were collected as two replicates from the grf6 mutant and the WT (V10 
stage), while root samples were collected as three replicates from the myb31 mutant 
and the WT (V3 stage) for sequencing. Extraction of total RNA and library construc-
tion were performed as described above. Clean data were mapped to the B73 AGPv4 
reference genome using STAR software (version 2.7.3a) with default parameters [121]. 
Unique reads were used for analysis of differential expression using the Cufflinks (ver-
sion 2.2.1) with package Cuffdiff [122].

Real‑time quantitative reverse transcription PCR (qRT‑PCR)

RNA (500 ng) was used for synthesis of the first-strand complementary DNAs 
(cDNAs) in 10 μl of reaction mixture using the HiScript II Q RT SuperMix for qPCR 
(+gDNA wiper) (Vazyme, Nanjing, China). qRT-PCR was performed using the Taq 
Pro Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China) on the CFX96 
Real-time system (BIO-RAD, Hercules, the USA). The maize actin gene was used as 
internal reference. Three replicates of qRT-PCR were performed for the validation of 
RNA-seq data. The primer sequences are listed in Table S10.

Drought treatment of the myb31 mutant and WT

Seeds of the mutant and WT were planted into soil (peat: perlite [70:30]) and grown 
to the V3 stage (growth room kept at 22–26 °C, with a 16-h light/8-h dark photoper-
iod). Watering was withheld from all seedlings until plants showed wilting (approxi-
mately 13–16 days). Watering was then resumed for 5 days before phenotypic changes 
were recorded.
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Motif enrichment analysis (SEA), GO enrichment, and association analysis

According to the ranked weights, the 1-kb sequences upstream of the start codon 
were extracted for the top 100 target genes. Motif enrichment analysis in these 
sequences was performed using the web software MEME with the function of Simple 
Enrichment Analysis (SEA) (https://​meme-​suite.​org/​meme/​tools/​sea). GO enrich-
ment analysis was conducted using agriGO (http://​syste​msbio​logy.​cau.​edu.​cn/​agriG​
Ov2/) [123]. A false discovery rate (FDR ≤ 0.05) was used to identify significant GO 
terms.

A natural population with 347 maize inbred lines was used to perform association 
analysis. The survival rate of seedlings from these maize lines under drought stress was 
investigated previously and used here [96]. The gene body of ZmMYB31 contained 107 
high-confidence SNPs. Association analysis was performed using the software GAPIT3 
[124] with general linear model (GLM).
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